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DATA PROCESSING AND ANALYSIS FOR
ABLE SURFACE CHARACTERIZATION,

EDDY CORRELATION FLUX MEASUREMENT SYSTEM

BACKGROUND

1.  Definition of statistical terms

The mean of a time series of n data values is the average value of the variable:
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The variance is the average square of the departure of the variable from its mean:
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The covariance of two time series, each with n data values, is the average product
of the departures of the two variables from their respective means:
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Often sensors are used whose signal output lags the physical sampling, for
example, air chemistry sensors.  In order to properly compute the covariances
with the output signals from these sensors, the output signals from the other
sensors must be correspondingly lagged.

2.  Running mean removal

The eddy correlation technique is based on the assumption that conditions are
steady, i.e., that there are no low frequency trends in the data.  In nature, steady
state conditions rarely exist.  It is common practice to detrend the data by using
departures from a short term (or "running") mean.  The appropriate low
frequency "cutoff" is primarily a function of the mean wind speed and the height
above the ground.  For instrumentation deployed at the height of 3 meters,
variances and covariances are computed for departures from the mean of the
past 200 seconds.  The "running" means are determined recursively:

  ix  =  1 − −∆t
τe( ) ix  +  

−∆t
τe( ) i−1x (4)

where ∆t is the sampling interval and τ is the time constant.
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3.  Coordinate rotations

Coordinate rotation transforms, which result in zero vertical and transverse
mean wind speeds, are applied to the variances and covariances from the
running means before the fluxes are computed.

The angles θ and φ are defined:

  
θ = arctan v / u( ) or

  
θ = arcsin v / 2u + 2v( ) (5)
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The rotated means are defined:

  
û 

=  ucosθcosφ +  vsinθcosφ +  wsin φ (7)

  
v̂
 

=  v cosθ −  usinθ
(8)
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=  wcosφ − ucosθsinφ− vsinθsinφ

(9)

The rotated variances are defined:

  

û
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2σ 2cos θ 2cos φ + v
2σ 2sin θ 2cos φ+ w

2σ 2sin φ

 +2 uvσ sinθcosθ 2cos φ + 2 uwσ cosθsinφcosφ
 +2 vwσ sinθsinφcosφ (10)
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The rotated covariances are defined:

  

û ŵ
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and

  ŵs
σ  =  wsσ cosφ− usσ cosθsin φ− vsσ sinθsinφ (16)

  ûs
σ  =  usσ cosθcosφ + vsσ sinθcosφ + wsσ sinφ (17)

  v̂s
σ  =  vsσ cosθ − usσ sinθ (18)

where s is any scalar quantity, e.g., virtual temperature, water vapor density, or
CO2 density.

4.  Fluxes

The vertical fluxes of momentum, sensible heat, latent heat, and CO2 can be
obtained from the covariances of the vertical wind with the horizontal wind, the
vertical wind with temperature, the vertical wind with water vapor, and the
vertical wind with CO2, respectively.  Momentum flux is rarely listed explicitly.
Instead, the friction velocity is computed by:

  *u = uw−σ (19a)

Sensible heat flux is determined by:

  H = −ρ pc wTσ (20a)
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latent heat flux is determined by:

  vL E = −ρ vL wqσ (21a)

and CO2 flux is the covariance:

    σWCO 2
(22)

where ρ is air density, cp is the specific heat of air at constant pressure, Lv is the
latent heat of vaporization of water, and q is specific humidity.  The constants ρ,
cp, and Lv are functions of water vapor density (ρv), ambient air temperature (Ta),
and atmospheric pressure (p).  The mixing ratio is calculated from mean values
of ρv (in g/m3), Ta  (in ° K), and p (in millibars):

  
r =

2.87x1 −30 vρ aT

p
(23)

The air density in g/m3 is computed from the mixing ratio and mean values of Ta
(in ° K) and p (in millibars):

  
ρ =

p 1+ r( )
2.87x1 −30 aT 1 +1.6078r( )

(24)

The specific heat of dry air at constant pressure in Watt·sec/g·°K is corrected for
the presence of water vapor:

  p
c = 1.006 +1.846r (25)

and the latent heat of vaporization of water in Watt·sec/g is corrected for air
temperature effects:

  vL = 2501.3 − 2.366 aT (26)

where Ta is expressed in °C.

5.  Spectral analysis

The Fourier Transform is a mathematical technique used to transform a time
series from the time domain to the frequency domain.  It is expressed in integral
form as:

      
Χ ω( ) =  x t( )

-∞

∞

∫
− j ωt

e dt (27)

where     j =  -1 and ω =  2πf , f being frequency in Hz.  The Fourier coefficients,
X(ω), are complex valued.  Numerous algorithms exist to perform a Fast Fourier
Transform (FFT), which minimize the number of computations.  For discrete
FFT's, ω varies from -ωN to ωN (± the Nyquist frequency ωN = π/∆t) with steps of
∆ω = 2π/n∆t where ∆t is the sampling interval and n is the number of samples.

The power spectrum is used to view the energy characteristics (variance) of the
signal in the frequency domain.  The integral of the power spectrum is equal to
the variance of the input.  The two-sided power spectrum  can be obtained from
the Fourier coefficients:

    
xS (ω)  =  

2 π
∆ω 2 n

 X(ω ) *X ω( ) (28)
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where * denotes the complex conjugate.  The power spectrum is always real
valued (not complex).  A one-sided power spectrum is obtained by summing the
estimates for ω and -ω:

    
xP ω( ) = 2π

∆ω 2 n
X(ω) *X ω( ) + X( −ω ) *X −ω( )( ) (29a)

Since the input data are all real-valued, symmetry allows the simplification:

    
xP ω( ) =

4π

∆ω 2 n
X(ω ) *X ω( )( ) (29b)

The cross spectrum is used to view the correlation between two signals in the
frequency domain.  The two-sided cross spectrum  can be obtained from the two
sets of Fourier coefficients:

    
xyS (ω)  =  

2 π
∆ω 2

 n
 X(ω ) *Y (ω ) (30)

A one-sided cross spectrum is obtained by summing the estimates of the cross
spectrum for ω and -ω:

    

xyG ω( )= xyC ω( ) − i xyQ ω( )

=
2 π

∆ω 2 n
X(ω) *Y (ω ) + X( −ω) *Y ( −ω)( )

(31a)
Since both input data series are real-valued, symmetry allows the simplification:

    
xyG ω( ) =

4π

∆ω 2 n
X(ω ) *Y ω( )( ) (31b)

The co-spectrum is the real portion of the one-sided cross spectrum and the
quadrature spectrum is the negative of the imaginary portion of the one-sided
cross spectrum.  The integral of the co-spectrum is equal to the covariance of the
inputs.  The ratio of the quadrature to the co-spectrum  can be used to determine
the phase relation between the inputs.

The shapes of power spectra and co-spectra are well known for different
atmospheric conditions.  Departures of the spectra from normal are indicative of
instrumentation problems or a divergence from typical atmospheric conditions.
Thus the spectra can be used as a quality check on the fluxes.

SURFACE CHARACTERIZATION STATION DATA PROCESSING AND
ANALYSIS

Data are processed over 30 minute periods, which start exactly on the hour or
half-hour.  All raw u, v, w, Tv, ρv, and CO2 data (36,000 points each) are written
to a file each half hour.   The first 32k (32,768) values are analyzed.
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Means of u, v, w, Tv, ρv, CO2, and s are computed (Eq. 1).  Variances of
departures from the means of u, v, w, Tv, ρv,  CO2, and s, and covariances of
departures from the means of uv, uw, uTv, uρv, uCO2, us, vw, vTv, vρv, vCO2, vs,
wTv, wρv, wCO2, ws, Tvρv, Tv CO2, Tvs,  ρvCO2, ρvs , and CO2s are computed
(Eq. 2 and 3).  The means of the departures from the "running" means are
computed (Eq. 1) for u, v, w, Tv, ρv, CO2, and s.  Variances of departures from the
"running" means of u, v, w, Tv, ρv, CO2, and s and covariances of departures
from the "running" means of uv, uw, uTv, uρv, uCO2, us, vw, vTv, vρv, vCO2, vs,
wTv, wρv, wCO2, ws, Tvρv, Tv CO2, Tvs, ρvCO2, ρvs, and CO2s are computed
(also Eq. 2 and 3).

Three dimensional coordinate rotations, calculated using Eqs. 5 through 18, are
applied to the variances of departures from the "running" means of u, v, and w
and covariances of departures from the "running" means of uv, uw, uTv, uρv,
uCO2, vw, vTv, vρv, vCO2, wTv, wρv and wCO2.

A vector averaged wind speed and direction are calculated from the means of u
and v by:

  
wind_speed = 2u + 2v (32)

  
wind_dir = arctan v

u( ) + boom_angle or

  

wind_dir = arcsin v
2

u + 2
v

 
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 

 

 
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where u, v, and wind_speed are expressed in m/s and wind_dir, the arctan, and
boom_angle are expressed in degrees.

An estimate of the standard deviation of wind direction is calculated from the
vector averaged wind speed and the mean value of s by using the algorithm:

  
θσ = 81 1− wind_speed

s
(34)

where wind_speed and s are expressed in m/s.

The mixing ratio, air density, specific heat of dry air at constant pressure, and the
latent heat of vaporization of water are computed (Eqs. 23-26) from the average
values of water vapor density, air temperature, and barometric pressure obtained
from data from a colocated Automatic Weather Station.

Finally, the friction velocity and the vertical fluxes of sensible heat, latent heat,
and CO2 are calculated from the coordinate rotated covariances:

  *u  =  uw−σ (19b)

  vH  =  - ρ pc w vTσ (20b)

  vL E =  v−L w vρσ (21b)
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The latter equations differ from Eq. 20a and 21a because the sensors measure
sonic temperature and water vapor density.

Power and co-spectra are computed for quality control and assurance of the data.
An in-place, direct, Fast Fourier Transform (FFT) of two  arrays, one real and the
other imaginary, is used to transform the u, v, w, Tv, ρv , and CO2 data from the
time domain to the frequency domain.  A two-butterfly, Cooley-Tukey, radix-2
FFT and a lookup table for the sine - cosine transfer functions are used.  The FFT
returns the Fourier coefficients for the cosine transform in the real array and for
the sine transform in the imaginary array.  Two routines are used to produce the
Fourier coefficients.  The first uses the symmetry of the transform of a real-
valued input:

  X −ω( )= *X ω( ) (35)

and of the transform of purely imaginary input:

  Y −ω( ) = *−Y ω( ) (36)

where * denotes complex conjugation.  By putting one time series in the real
array and a second series in the imaginary array, performing the FFT, and then
unpacking the resulting arrays into arrays for the two series, two transforms are
accomplished by a single FFT.  The second routine, used when the number of
inputs is an odd number, puts the input series into the real array and zero's the
imaginary array.  Both routines return the coefficients for frequency i∆ω in the
i'th location, for all i = 0, 1, 2, ..., (n/2)-1, where n is the number of data points,
∆ω=2π/n∆t is the frequency step, and ∆t is the sampling interval.  No coefficients
are returned for (n/2)∆ω.

Raw power spectra for u, v, w, Tv, ρv , and CO2 are computed from the Fourier
coefficients (Eq. 29b) by summing the squares of the real and the imaginary
coefficients:

  
xS i( ) =

4π
∆ω 2n x

2R i +1( ) + x
2I (i +1)( ) (37)

for i = 0, 1, 2, ..., (n/2)-2.  The spectral estimate for frequency of zero is not
computed.

The raw power spectra are smoothed and the number of estimates reduced by
averaging.  The first (lowest frequency) estimate is not averaged.  The second
and third are averaged to produce the second value of the smoothed spectra.
The fourth through the seventh are averaged to produce the third value of the
smoothed spectra.  The next eight, then sixteen, and then thirty-two are averaged
to produce the fourth, fifth, and sixth values of the smoothed spectra.  The
remaining are averaged over sixty-four estimates each to produce the seventh
through the one hundred and first value.  Each of the smoothed spectral values is
multiplied by the square of the calibration slope and the frequency in the center
of the respective averaging interval.  The frequencies are retrieved from a lookup
table.



8

Raw co-spectra for uv, uw, uTv, uρv, uCO2, vw, vTv, vρv, vCO2, wTv, wρv, wCO2,
Tρv, TCO2,  and ρvCO2 are computed from the Fourier coefficients (Eq. 31b) by
summing the products of the real coefficients and the products of the imaginary
coefficients for the two variables:

  
xyG i( ) =

4π
∆ω 2n

( xR (i +1) yR (i + 1)+ xI (i +1) yI (i +1)) (38)

for i = 0, 1, 2, ..., (n/2)-2.  The co-spectral estimate for frequency of zero is not
computed.

The raw co-spectra are smoothed and the number of estimates reduced by
averaging in the same manner as the power spectra.  Each of the smoothed
spectral values is multiplied by the product of the calibration slopes and the
frequency in the center of the respective averaging interval.


